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Abstract. One of the factors that can limit the scalability of MPI to ex-
ascale is the amount of memory consumed by the MPI implementation.
In fact, some researchers believe that existing MPI implementations, if
used unchanged, will themselves consume a large fraction of the avail-
able system memory at exascale. To investigate and address this issue,
we undertook a study of the memory consumed by the MPICH2 imple-
mentation of MPI, with a focus on identifying parts of the code where
the memory consumed per process scales linearly with the total num-
ber of processes. We report on the findings of this study and discuss
ways to avoid the linear growth in memory consumption. We also de-
scribe specific optimizations that we implemented in MPICH2 to avoid
this linear growth and present experimental results demonstrating the
memory savings achieved and the impact on performance.

1 Introduction

We have already reached an era where the largest parallel machines in the world
have a few hundred thousand cores and are soon approaching an era of million-
core systems. For example, an IBM Blue Gene/Q system (Sequoia) to be de-
ployed at Lawrence Livermore National Laboratory in 2012 will have more than
1.5 million cores and a peak speed of 20 petaflops. Roadmaps for future systems
indicate that we can expect systems with many millions of cores over the next
5-10 years. For example, a DOE technology and architecture roadmap for ex-
ascale envisions a 1 exaflop/s machine by 2018 with 1 billion cores [8]. Another
significant trend is that although the number of cores is increasing rapidly, the
amount of memory available per core is not increasing.

As systems grow to these sizes, many researchers and users wonder whether
MPI will scale to such large systems. Scalability of performance is not the only
concern; an often-cited concern is the potential memory consumption of MPI
at scale. It is generally believed that as the system size grows, the memory
consumed by MPI on each process also grows linearly. Given the limited amount
of memory per core, it is believed that, unless steps are taken, MPI itself will
consume a large fraction of available memory on exascale systems.

Anecdotal evidence exists of isolated examples indicating memory consump-
tion issues in some functions in some MPI implementations, often reflecting a



bug in the code or oversight on the part of the developers. At small scale, de-
velopers tend to make assumptions or take shortcuts that need to be fixed at
scales several orders of magnitude higher. However, quantitative data on MPI
memory consumption at scale is hard to find. Particularly lacking is information
about what aspects are merely bugs that need to be fixed and what are more
intrinsic problems that require a redesign or rethinking of conventional ways of
implementing MPI, including changes that may incur a performance penalty at
small scale but are necessary for the code to even run at large scale.

To investigate these aspects and address potential problems, we undertook a
study of the memory consumed by MPICH2 [7], an MPI implementation that is
widely used on many of the largest machines in the Top500 list. We focused par-
ticularly on parts of the code where the memory consumption increases linearly
with system size. We report on the findings of this study and discuss ways in
which such linear growth in memory can be avoided. We also designed and imple-
mented specific optimizations in MPICH2 to avoid this linear memory growth.
We describe these optimizations and present experimental results demonstrating
the memory savings achieved and the negligible impact on performance.

Related Work. Balaji et al. [3] discuss issues related to scaling MPT to millions
of cores, in terms of what is needed both in the MPI specification and in MPI
implementations. The authors consider implementation issues in general, not
specific to any particular MPI implementation. In this paper, on the other hand,
we focus on identifying and fixing memory scalability issues in the MPICH2
implementation of MPI. Other researchers have also explored memory-space
related optimizations for MPI implementations, such as the memory required
for storing communicators and groups [5, 6, 9].

2 Apparent Nonscalable Memory Use in MPI

At first glance, MPI appears to have a number of areas where it must store
O(p) data on each MPI process, where p is the number of processes in the
MPI program. In this section, we discuss some of these areas and comment on
what MPI really requires for them. For simplicity and to match the behavior of
most MPI implementations on large systems, we assume that all processes are
in MPI_COMM_WORLD (e.g., no dynamic processes).

Group Representation. An MPI group describes a collection of processes.
The obvious implementation is an enumeration of processes by some iden-
tifier, such as rank in MPI_COMM_WORLD or an IP address and process ID.
However, MPI only requires that this information be available, not the form
in which it is stored. Lossless compression of the data is permitted; for ex-
ample, for MPT_COMM_WORLD, the group can be represented as simply 0:p-1
(all ranks from 0 to p — 1, requiring only a few words of storage).

Connections and Message Buffers. MPI allows a process to communicate
directly with all other processes. It is sometimes alleged that this feature
requires MPI to maintain O(p) data for such connections and to allocate



significant buffer space to each possible connection. For example, providing
only 16 KB for each connection for eager message delivery would require
16 GB on each process for a million-process MPI program (a total of 16
petabytes of memory). However, MPI does not specify when connections
are established or how buffer memory is allocated and associated with con-
nections; in fact, MPI does not even define “connections.” For example, an
MPI implementation may instantiate a connection only when needed and
dynamically associate buffer memory to active connections. For a scalable
application (which by definition cannot communicate with O(p) other pro-
cesses), only a small number of such connections can be active.

RMA Windows. Each MPI RMA window is created with its own displace-
ment value, start address, size, and info object for hints. Because RMA is
for one-sided operations, it is natural to store information about the remote
windows locally, where the information can be quickly accessed. However,
locally storing the information for all ranks is not required by MPI. Other
options include using a cache strategy for such data, acquiring it on first use,
or even fully distributing the data and using one-sided operations to acquire
the data.

Nonscalable Arguments. Some MPI routines have array parameters of size
p. These are nonscalable routines and simply cannot be used in a scalable
application. They do not reflect a problem in an MPI implementation.

In all of these cases, allocating memory for each of the O(p) items both sim-
plifies the implementation and may be (slightly) faster. However, O(p) memory
is not required, and we argue that the performance cost is often negligible.

3 Memory Usage in MPICH2

MPICH2 has been carefully designed and developed to be adaptable to environ-
ments with a paucity of memory resources. The current design is parsimonious
with memory in certain areas, such as the usage and representation of MPI
groups. In other areas of the code, decisions were consciously made to trade
increased memory consumption to obtain decreased algorithmic running times.
In a severely memory-constrained environment, some of these decisions could be
revisited and potentially altered when such a change would be beneficial. Yet
unsurprisingly, several memory inefficiencies remain in the current code. We dis-
cuss these strengths and weaknesses of the current stable version of MPICH2 in
this section.

3.1 Link-Time Program Text Size Savings

MPICH2 was designed from the beginning to be highly modular. Less-used code
is organized so that the code and the associated data structures are included (by
the linker) only when actually used by the application. For example, the buffered
send code is included only if the user references one of the buffered send routines.
The code for each of the MPI collectives is another example. This reduces the



size of the executable code, which is good for both very large systems and ones
where use of dynamically loaded code from shared libraries may stress the I/0O
system, such as nodes without local or nearby disks.

3.2 One-Sided Communication

The current implementation of MPICH2 stores a copy of the window start ad-
dress, size, and displacement unit of all processes locally on each process for easy
lookup. This clearly requires O(p) space on each process, which is nonscalable.
Possible approaches to fix this problem are outlined in Section 2, and we will
consider them as part of our future work.

3.3 MPI Groups

Within every MPI process, the process assigns to each other process to which
it is connected® a local process ID, or LPID, in the range [0, p), where p is the
number of connected processes. Note that LPIDs are not unique across processes;
they exist as a purely local concept to simplify process-related bookkeeping op-
erations.

An MPI group is a totally ordered set of processes in which each process is
indexed by an integer rank in the range [0, py), where p, is the size of the group.
This set is currently stored as a dense int array of LPIDs, where element 7 in the
array stores the LPID of the process corresponding to rank 7 in the group. This
information is sufficient, though nonoptimal, to be able to correctly implement
all local MPI_Group_ operations.

As a performance optimization, a list of indices sorted by increasing LPID
order can also be constructed and stored in the group object, which signifi-
cantly improves the performance of MPI_Group_translate_ranks, MPI_Group-
_compare, and MPI_Group_union. In order to conserve memory (and list con-
struction time) in codes that do not use these routines, this sorted LPID list is
constructed lazily only when these routines are first invoked. Constructing this
list requires an O(pg log p,) time sorting step and roughly doubles the size of the
group object for nontrivial values of p,.

3.4 Virtual Connections

In most practical MPI implementations, each process must maintain at least
a modicum of state for each other process with which it is communicating. In
MPICH2, this state is kept in a virtual connection object (or VC) associated
with the remote process. MPICH2’s current implementation creates one of these
objects for each other process in the system, on every process. That is, across
an entire MPI application these VC objects consume O(p2) memory.

This obvious scalability issue is addressed in Section 4. However, even the
current design is more scalable than a naive implementation. Many buffers that

3 See MPI-2.2, § 10.5.4, for a formal definition of “connected” in this context.



are attached to the VC object are not created until communication actually
occurs with the process corresponding to that VC. For connection-oriented com-
munication substrates such as TCP, these connections are not created until com-
munication actually occurs, thereby conserving operating system resources.

The VC implementation provides another example of a location where addi-
tional space is consumed in exchange for reduced access time. Each VC contains
a “scratch pad” area that may be used by lower-level code to store per-VC infor-
mation. In order to decouple lower layers from the upper layers of MPICH2, such
storage space must exist. However, it would also be sufficient for this space to be
just large enough to hold a pointer, such that the lower-level code could allocate
a separate object and store a pointer to it in this minimal scratch pad region.
This approach would require an additional pointer dereference for the lower-level
code to access its own VC-specific data. Instead, by making the scratch pad re-
gion larger, this additional pointer dereference is saved for latency-sensitive data
accesses that can be fit into the scratch pad. Of course, tuning the size of this
scratch pad becomes critical for large p.

3.5 Communicator and Topology Information

Among many responsibilities, MPI communicators are responsible for storing
enough data in order determine which underlying process corresponds to a given
rank in that communicator. For example, when the user calls MPI_Send(.. .,
5,...,comm), the implementation must be able to determine that rank 5 in
comm will result in communication with a particular process on a particular
network host. More concretely in the case of MPICH2, this means that given a
communicator and a rank, the implementation must be able to produce a VC
object. This translation is currently supported by a virtual connection reference
table (or VCRT).

VCRTs consist of a dense array of VC references (or VCRs), indexed by
communicator rank. The VCR is an opaque type, but because of practical details
of the interface, it must typically be implemented as a pointer to the underlying
VC. Each communicator stores a pointer to its VCRT and manipulates reference
counts inside that VCRT. This reference counting permits shallow copies of the
VCRT for the common case of MPI_Comm_dup, reducing memory consumption.
However, besides sharing a VCRT between two communicators, VCRTs them-
selves have only O(p) per communicator space scalability in the general case.

MPICH2 stores additional information on a per process and per communic-
ator basis in order to support hierarchical collective communication algorithms.
For each connected process a node ID is stored, consuming O(p) memory on each
process. This approach enables creating two internal subcommunicators for each
user-created communicator: one that contains only “node leaders” and another
that contains only processes on the same node. For a top-level communicator of
size p that is spread evenly over k nodes, the node-leaders communicator will
contain k¥ members, while the node-local communicator will contain p/k mem-
bers. Every process will be a member of a node-local communicator, but only the



node leaders will be a member of the leader communicator. In MPICH2’s cur-
rent implementation these communicators will consume O(p2 Jk + pk) = O(pQ)
memory across the whole system (assuming constant k).

4 Steps to Reduce MPICH2 Memory Consumption

The current deficiencies in MPICH2 memory usage mentioned above can be
addressed in several ways. We detail here solutions we have implemented in an
experimental version of MPICH2, and we outline several additional solutions we
intend to implement in the near future.

4.1 Implemented Solutions

The most serious scalability problem discussed earlier is the O(pZ) memory con-
sumption by VCs (across the whole system) even when communication takes
place with zero or few partners. To rectify this issue, we have developed a proto-
type version of MPICH2 that substantially overhauls the way VCs are managed.

Under the new scheme, entire VC objects are created lazily only as needed
instead of statically at MPI_Init time. This change required a fundamental shift
in the way VCs are stored and accessed. The per communicator VCRTs discussed
in Section 3.5 have been eliminated and replaced with a similar, yet more efficient
concept: the LPID mapping (or LPM). These objects perform a similar role; but
rather than mapping communicator ranks to VCs directly and always via a dense
array mechanism, the LPM maps communicator ranks to LPIDs. This mapping
decouples the upper-level code, for example MPI collective routines, from any
notion of VCs that exist only at the lower level.

Unlike VCRTs, LPMs are truly opaque objects that are accessed only via
function calls and macros. This design provides the opportunity to encode the
communicator representation in the most succinct, memory-efficient manner pos-
sible. Examples include using compression techniques that take advantage of
domain-specific knowledge [9] or more general compression methods [4]. An-
other example of domain-specific compression is supporting identity mappings,
wherein the LPID is always equal to the communicator rank. Implementing this
identity mapping is trivial, given the new interface, and reduces per process mem-
ory consumption from O(p) to O(1) for communicators for which this mapping
holds (such as MPI_COMM_WORLD).

Conveniently, the LPM concept and interface also permitted us to unify the
representation of groups and the representation of communicator VC contents.
Future improvements to this common LPM facility will yield dividends in both
the group and communicator subsystems of MPICH2.

At a lower level, VCs are obtained only via APIs that refer to them by their
LPIDs. This design permits true lazy instantiation and storage of VC objects,
such as in a hash table, since upper-level code no longer holds pointers to all
VCs. This hash-based approach is exactly what we implemented, with a run-
time environment variable to select between the hash table and a dense, fully
populated array.



For convenience and robustness, we used the open source uthash package [10].
Additional constant factor time and memory savings may be possible with an
alternative implementation.

4.2 Proposed Solutions

Though we implemented several space-saving techniques in our experimental
version of MPICH2, there remain many that we did not have time to implement.
For example, data on the same SMP node can be shared, such as information
about MPI_Win objects. Data-caching strategies can be employed, particularly if
efficient remote memory access is available. We leave these approaches to future
work.

5 Results

In this section we provide experimental evidence that an MPI implementa-
tion can limit the use of memory for scalable applications without a signifi-
cant performance impact. We first look at some simple benchmarks, including
ping-pong performance microbenchmarks, and then evaluate several application-
based benchmarks.

All results were gathered on the “Fusion” cluster at ANL. Each node consists
of two Intel Xeon X5550 quad-core processors, and the nodes are connected by
QDR Infiniband. MPICH2 was configured as --with-device=ch3:nemesis:tcp
and --enable-fast.

5.1 Scalable Memory Use

To validate the expected memory consumption of the prototype, we crafted three
microbenchmarks that isolate basic communication behavior from more sophis-
ticated application MPI usage. These microbenchmarks respectively perform no
communication, scalable communication (a single MPI_Allreduce), and non-
scalable communication (pairwise communication between all processes). Fur-
thermore, the MPI library was instrumented to permit memory consumption
measurements to be taken. The results from running these simple programs re-
spectively provide minimum, modest, and maximum memory consumption base-
lines that are harder to observe as clearly in applications with more sophisticated
communication patterns.

Figure 1 shows the results of running these experiments with the lazy ini-
tialization prototype code enabled. As expected, the “no communication” and
“allreduce” benchmarks consumed essentially no additional memory per process
as the job size was increased, while the “all communication” benchmark showed
per process memory consumption increasing linearly with job size. This increase
indicates an O(pQ) systemwide memory consumption scalability problem, one
that our technique has addressed for programs with a scalable communication
pattern.
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Fig. 1. Per process memory consumption in the prototype for three microbenchmarks.
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Fig. 2. Netpipe ping-pong performance results (log-log plot for relevant message sizes).

5.2 Performance Impact

The techniques discussed in Section 4 are expected to at least slightly impact
performance. Figure 2 shows MPI-level bandwidth and one-way latency numbers
for the stable (“Trunk”) version of MPICH2 as a reliable baseline, as well as the
prototype configured to use an eagerly constructed dense array (“Eager”) or lazily
constructed sparse hash table (“Lazy”) for VC storage. Both a slight decrease
in large-message bandwidth and a slight increase in small-message latency can
be seen. We emphasize, however, that the prototype code has not been tuned
to any noteworthy extent; we expect to eliminate most of this performance gap
with further effort.

5.3 Application Impact

We measured the impact of our changes on scalable applications by examin-
ing the performance and memory consumption behavior of certain NAS Parallel
Benchmarks [2] and the Sequoia AMG benchmark that are representative of
application behavior. All of these benchmarks exhibit fairly scalable commu-
nication patterns; that is, the number of communication partners remains flat



Table 1. Performance of selected NAS Parallel Benchmarks, version 3.3 run with 512
processes.

Benchmark MPI Time (s) Memory/Process (kiB)

Trunk 536.77 5,149.2
cg.D.512 Eager 520.55 (—3.02%) 5,144.7  (—0.09%)
Lazy  556.82 (43.74%) 4,588.2 (—10.89%)

Trunk 18.69 5,154.2
mg.D.512 Eager 19.19 (+2.68%) 5,154.3  (40.00%)
Lazy  19.49 (+4.28%)  4,602.3 (—10.71%)
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Fig. 3. Per process memory consumption in the prototype for the Sequoia AMG bench-
mark.

or increases slowly as job size increases. These codes are also well known and
commonly used to represent the behavior of many real-world MPI numerical
applications.

Table 1 lists the performance impact and average per-process memory con-
sumption of our techniques when applied to the CG and MG class D NAS Parallel
Benchmark. The benchmarks were run with the same three configurations from
Figure 2. At this modest scale MPI memory consumption is reduced in the Lazy
approach by approximately 550 bytes per process (/2 11%), at a cost of less than
5% in performance. We did observe variability in the run times, despite great
consistency in the memory consumption numbers, which we attribute to noise
from the shared Infiniband network on this system.

Figure 3 shows per process memory consumption versus job size when run-
ning the Sequoia AMG benchmark [1] on the prototype with both the eager
and lazy VC initialization strategies. The benchmark was configured to solve a
Laplace-type problem* with two different three-dimensional processor layouts.
The first layout was cubic (e.g., 36 processes organized as P, x P, x P, = 6x6X6).
The plot clearly shows a substantially slower-growing memory consumption

4 AMG was run with the following options: -laplace -n 25 25 25 -solver 4.



curve for this case when lazy VC initialization is used. The second layout was
entirely linear (e.g., 36 x 1 x 1). Although unrealistic as a choice of typical ap-
plication parameters, this layout has far fewer communication partners, which
yields the expected almost entirely flat per-process memory consumption curve.

6 Conclusions

We have shown that an MPI implementation can be constructed so that memory
use grows slowly as the number of processes increase and that the performance
cost for a real application is low.
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